

Welcome to definite’s documentation!

Simple finite state machines.

Perfect for representing workflows.

Guides:

	Tutorial
	The Most Basic Example

	More States/Transitions

	Adding Transition Behavior

	Using/Affecting External Objects

	Conclusion

	Installation
	Standard Installation

	Development Installation

	Advanced Usage
	Use External JSON Files

	Certain Transition Logic

	Auto-Create State Constants

API Reference:

	definite

	definite.constants

	definite.exceptions

	definite.fsm

Indices and tables

	Index

	Module Index

	Search Page

Tutorial

definite lets you create small finite state machines. These are great for
tracking state, as well as triggering transition behavior when the states
change.

The Most Basic Example

To start with, you’ll need to import the FSM class from definite, then
subclass it.

We’ll define the tiniest fully-functional subclass we can, allowing just a
start & end state. Beyond the subclassing FSM, the only
requirements are defining the allowed_transitions and default_state
attributes on the subclass.

from definite import FSM

class Tiny(FSM):
 allowed_transitions = {
 "start": ["end"],
 "end": None,
 }
 default_state = "start"

Note

You may be wondering why default_state is also required. A natural
assumption would be that the first mentioned state in
allowed_transitions would be the default.

Unfortunately, dictionary ordering is NOT guaranteed in Python. So
even though the definition is code might look sorted, once it exists
in-memory, there’s no guaranteed “first” key.

This could be solved in a variety of clever ways (special syntax, changing
from a dict to a two-tuple structure, using
collections.OrderedDict, etc.). But manually specifying it this way is
clear, easy-to-read, & unsurprising/doesn’t require special knowledge.
Hence, having to specify it.

Now you can instantiate the new Tiny class. Each instance starts in the
provided default state of start.

>>> tiny = Tiny()
>>> tiny.current_state()
"start"

There are also a variety of methods for inspecting what the FSM can do,
such as checking what states are available, if a given state is a
recognized/valid state, and if a given state can be transitioned to.

>>> tiny.all_states()
["end", "start"]
>>> tiny.is_valid("start")
True
>>> tiny.is_valid("nopenopenope")
False
>>> tiny.is_allowed("end")
True

From there, we can trigger a state change by tell it to transition to the
end state.

>>> tiny.transition_to("end")
>>> tiny.current_state()
"end"

Just two states isn’t very useful, so let’s move on to a more complex example.

More States/Transitions

Enforcing workflows are a great use of finite state machines, so let’s model
a possible workflow for a small publisher. We’ll assume there are writers,
editors, and an editor-in-chief.

	Writers can only create drafts, then submit them for review.

	Editors perform the review, then decide whether to send it back for changes
(back to draft), to mark it as reviewed for the editor-in-chief to look at,
or to reject the story.

	Editor-in-chief looks at reviewed stories, then either publishes them or can
reject them.

We can model all the states a news story could be in this:

from definite import FSM

class Workflow(FSM):
 allowed_transitions = {
 "draft": ["awaiting_review", "rejected"],
 "awaiting_review": ["draft", "reviewed", "rejected"],
 "reviewed": ["published", "rejected"],
 "published": None,
 "rejected": ["draft"],
 }
 default_state = "draft"

Once this is defined, we can immediately start using it to guide what states
our business logic.

>>> workflow = Workflow()
>>> workflow.current_state() # "draft"

>>> workflow.transition_to("awaiting_review")
>>> workflow.transition_to("reviewed")

>>> workflow.is_allowed("published") # True

Invalid/disallowed transitions will throw an exception.
>>> workflow.current_state() # "reviewed"
...which can only go to "published" or "rejected", but...
>>> workflow.transition_to("awaiting_review")
Traceback (most recent call last):
...
workflow.TransitionNotAllowed: "reviewed" cannot transition to "awaiting_review"

Adding Transition Behavior

You can build your own logic around the FSMs anywhere, but definite also
supports adding your own transition logic directly to the state machine, keeping
the state & behavior together.

For instance, let’s say our previous example should send emails when a story
is either waiting on review, or when it’s available for the editor-in-chief to
publish.

We can expand on transition behavior by adding “handlers” to specific states.
In definite, any method prefixed with handle_ followed by the desired
state name will automatically be called when changing to that state.

So, to send emails when awaiting_review & reviewed are met, we’d
implement the following handlers.

from email.message import EmailMessage
import smtplib

from definite import FSM

FROM_EMAIL = "no-reply@example.com"
EDITORS_EMAIL = "ed-staff@example.com"
CHIEF_EMAIL = "chief@example.com"

To keep with the standard library theme, here's a very basic email-sending
function. Probably not very production-friendly.
def send_mail(from_addr, to_addr, subject, message):
 msg = EmailMessage()
 msg["From"] = from_addr
 msg["To"] = to_addr
 msg["Subject"] = subject
 msg.set_content(message)

 smtp = smtplib.SMTP('localhost')
 smtp.send_message(msg)
 smtp.quit()

Here's our already-written FSM...
class Workflow(FSM):
 allowed_transitions = {
 "draft": ["awaiting_review", "rejected"],
 "awaiting_review": ["draft", "reviewed", "rejected"],
 "reviewed": ["published", "rejected"],
 "published": None,
 "rejected": ["draft"],
 }
 default_state = "draft"

 # ...but here we add our new handlers!
 def handle_awaiting_review(self, state_name):
 msg = "There's a story awaiting review. Go log in & check it out!"
 send_mail(
 FROM_EMAIL,
 EDITORS_EMAIL,
 "Story ready for review!",
 msg
)

 def handle_reviewed(self, state_name):
 msg = "There's a story ready for publishing. Please have a look!"
 send_mail(
 FROM_EMAIL,
 CHIEF_EMAIL,
 "Story ready for publishing!",
 msg
)

These handlers (handle_awaiting_review & handle_reviewed) will
automatically be called upon transition. For example:

>>> storyflow = Workflow()
Some work happens, then...

>>> storyflow.transition_to("awaiting_review")
During this transition, the ``handle_awaiting_review`` method gets called
and the email is sent to the editors!

>>> workflow.transition_to("reviewed")
And similarly with the editor-in-chief!

Using/Affecting External Objects

We’ve got better encapsulization, but there are a couple shortcomings of the
last example.

	The emails don’t include any information about which story got changed.

	
	Because they’re stored in the database, we’re presumably having to manually
	manage the status of each story.

To improve on this, we’ll introduce two more concepts: the ability for a FSM
to be specific to an external object, and the special handle_any transition
handler.

Note

For brevity, we’re going to omit that same email code in all the future
examples. Assume it’s still defined, or that you’ve put it in its own
module & are importing it.

First, external objects. By passing ANY Python object in during
initialization, you can enable the FSM to use it during transition handlers.
We’ll make a couple small tweaks to our existing handlers.

class Workflow(FSM):
 allowed_transitions = {
 "draft": ["awaiting_review", "rejected"],
 "awaiting_review": ["draft", "reviewed", "rejected"],
 "reviewed": ["published", "rejected"],
 "published": None,
 "rejected": ["draft"],
 }
 default_state = "draft"

 def handle_awaiting_review(self, state_name):
 # Note that we're now using a format string & `self.obj` here!
 msg = f"'{self.obj.title}' is awaiting review. Go log in & check it out!"
 send_mail(
 FROM_EMAIL,
 EDITORS_EMAIL,
 "Story ready for review!",
 msg
)

 def handle_reviewed(self, state_name):
 # Note that we're now using a format string & `self.obj` here!
 msg = f"'{self.obj.title}' is ready for publishing. Please have a look!"
 send_mail(
 FROM_EMAIL,
 CHIEF_EMAIL,
 "Story ready for publishing!",
 msg
)

Then, when we go to use the workflow, we pass the news story to the constructor.
The FSM will save a reference to it & exposes it as self.obj to the
handlers.

Note

For convenience, we’ll use a Django model here. But there’s nothing
stopping you from using whatever else, like SQLAlchemy’s ORM, a Redis
key/value, flat files, even built-in Python objects like dict!

>>> from news.models import NewsStory

>>> story = NewsStory.objects.create(
... title="Hello, world!",
... content="This is our very first story!",
... author=some_writer,
... state="draft",
...)

We pass it in here via the `obj=...` kwarg!
>>> workflow = Workflow(obj=story)

Now when we make the transition to the new state, the editors will get
a customized email telling them the title of the story that's ready for
review!
>>> storyflow.transition_to("awaiting_review")

Another improvement we can make is to persist the Workflow state in the
database. So if a different server loads the story, the correct state will be
preserved there. We’ll implement this using the handle_any method.

The special handle_any method fires on ANY/ALL state changes, making it
easy to add behavior that should happen with any change of state.

class Workflow(FSM):
 allowed_transitions = {
 "draft": ["awaiting_review", "rejected"],
 "awaiting_review": ["draft", "reviewed", "rejected"],
 "reviewed": ["published", "rejected"],
 "published": None,
 "rejected": ["draft"],
 }
 default_state = "draft"

 # Here's the new code!
 def handle_any(self, state_name):
 # The `state` field on the model isn't special, just a plain old
 # `CharField`. But we can push all the FSM's changes right onto it.
 self.obj.state = self.current_state()
 self.obj.save()

 def handle_awaiting_review(self, state_name):
 # Same as before...

 def handle_reviewed(self, state_name):
 # Same as before...

Now when we work with the story, we’re also persisting the state to the DB.

Same as before.
>>> from news.models import NewsStory
>>> story = NewsStory.objects.create(
... title="Hello, world!",
... content="This is our very first story!",
... author=some_writer,
... state="draft",
...)
>>> workflow = Workflow(obj=story)

First, show that nothing has changed yet & no handlers have fired.
>>> story.state
"draft"
>>> workflow.current_state()
"draft"

But now, when we trigger the transition, both the `handle_any` & the
`handle_awaiting_review` will fire!
>>> storyflow.transition_to("awaiting_review")
Email sent!

Proof that `handle_any` fired!
>>> story.state
"awaiting_review"

This is great for generic things like adding logging, persisting to long-term
storage, or performing integrity checks.

The final change to make is that we can pass the story’s current state to
the Workflow when creating it, making it so that no matter what server loads
the story, the FSM is always in the matching state.

>>> from news.models import NewsStory
We'll assume there's already some stories in the database.
>>> story = NewsStory.objects.get(title="Hello, world!")

Here, we pass in the `initial_state` from the model, to synchronize the
FSM to the correct state.
>>> workflow = Workflow(obj=story, initial_state=obj.state)

Note that there's nothing special/magical about the `state` field name
on the model. Hence the explicit use of `initial_state=...`.

Conclusion

We’ve learned how to define simple finite state machines, ones with complex
state interactions, how to use the everyday parts of the API, and how to build
in behaviors!

However, there’s more that can be done with definite:

	You can store your states/transitions in external JSON files

	You can implement logic that only happens on certain transitions

	You can auto-create constants for your states

You can find examples of these within the Advanced Usage guide.

Alternatively, you can dive into the API references, such as the
definite.fsm reference.

Enjoy!

Installation

You must be running Python 3.6 or greater.

definite only requires the Python built-in standard library & has no
other dependencies.

Standard Installation

For everyday usage, simply run:

$ pip install definite

It’s recommended that you use a virtualenv (or poetry, or pipx, or
whatever) to isolate your install from the system Python.

Development Installation

If you’d like to work on definite’s code, run tests or generate the docs
locally, the setup is a touch more complex. Here’s the recommended approach.

$ git clone git@github.com:toastdriven/definite.git
$ cd definite
$ poetry install
$ poetry shell

Now you can run tests.
$ pytest .

Or build the docs.
$ cd docs
$ make html && open _build/html/index.html

Advanced Usage

Here are some advanced ways you can use definite.

Use External JSON Files

definite has built-in support for loading states/transitions directly
from JSON files. This allows you to share the states with other code, or allow
non-technical users to edit them.

The JSON looks almost identical to the required attributes for a FSM
subclass.

{
 allowed_transitions={
 "created": ["waiting"],
 "waiting": ["in_progress", "done"],
 "in_progress": ["done"],
 "done": null
 },
 default_state="created"
}

However, it can be loaded & the classes created at runtime.

>>> import json
>>> from definite import FSM

First, we load the JSON up.
>>> state_data = json.loads("/path/to/above/file.json")

Then we can dynamically create the class based on the JSON.
>>> JobFlow = FSM.from_json("JobFlow", state_data)

And then instantiate it & use it.
>>> job_1 = JobFlow()
>>> job_1.current_state()
"created"
>>> job_1.all_states()
["created", "done", "in_progress", "waiting"]

Certain Transition Logic

When asked to perform a transition, the FSM class does things in a certain
order:

	Check for validity/allowed-ness new state

	If present, call the handle_any handler with the new state

	If present, call the handle_<state_name> handler with the new state

	Finally update the current state to the new state

Because of this order, you can take special actions only for transitions
between two certain states.

For example, the Workflow example from the Tutorial can reach
the rejected state from a variety of other states (draft,
awaiting_review, reviewed).

If you’re feeling malicious, you could send the writer a scathing email
only when the editor-in-chief rejects their story (the transition from
reviewed to rejected).

from .email import send_mail, FROM_EMAIL

This is the same as the tutorial code.
class Workflow(FSM):
 allowed_transitions = {
 "draft": ["awaiting_review", "rejected"],
 "awaiting_review": ["draft", "reviewed", "rejected"],
 "reviewed": ["published", "rejected"],
 "published": None,
 "rejected": ["draft"],
 }
 default_state = "draft"

 # But here, we look for the `rejected` state.
 def handle_rejected(self, state_name):
 # The `state_name` here is "rejected".
 # But `self.current_state()` will tell you what the "old" state was!
 prev_state = self.current_state()

 # So if it was previously reviewed by the staff editors, it went
 # to the chief for publishing, but got rejected!
 if prev_state == "reviewed":
 # TIME TO BURN.
 msg = (
 f"The editors let '{self.obj.title}' through, but the Chief"
 "tossed it in the trash! Write better content!"
)
 send_mail(
 FROM_EMAIL,
 self.obj.author.email,
 "The Chief rejected you!",
 msg
)

Obviously, this is mean-spirited & would promote an unhealthy work environment.
Don’t do this per-se, but the utility to control behavior down to certain
transitions has a lot of potential.

Auto-Create State Constants

definite automatically does a fair amount of checking of state names for
validity. However, some programmers may prefer having constants for use instead
of the simple strings shown throughout these docs.

Because FSM is designed to be subclassed, you could override/extend the
built-in behavior to automatically create constants for use.

from definite import FSM

class AutoConstantsFSM(FSM):
 # We'll latch onto the `setup` method, which is called when the class
 # is instantiated.
 def setup(self):
 # Make sure you call `super()` first.
 super().setup()

 # Then we can automatically create the constants on the class.
 for state_name in self.allowed_transitions.keys():
 setattr(self, state_name.upper(), state_name)

Then you simply inherit from your new subclass instead of FSM.

class JobFlow(AutoConstantsFSM):
 allowed_transitions = {
 "created": ["waiting"],
 "waiting": ["in_progress", "done"],
 "in_progress": ["done"],
 "done": None,
 }
 default_state = "created"

Now all-caps versions of your states will be present on your instances.

>>> job_1 = JobFlow()
>>> job_1.transition_to(job_1.WAITING)

definite

definite.constants

	
definite.constants.UNKNOWN_STATE: class

	A sentinel value, used by the FSM class to detect when no
default_state has been provided by the subclass.

It has no meaningful attributes/method, is never instantiated, & is
strictly used for identity purposes.

	
definite.constants.ANY: str = ``"any"``

	A constant to represent any/all state names.

definite.exceptions

definite.fsm

Index

 D

D

 	
 	definite.constants.ANY (built-in variable)

 	
 	definite.constants.UNKNOWN_STATE (built-in variable)

 nav.xhtml

 Table of Contents

 		
 Welcome to definite’s documentation!

 		
 Tutorial

 		
 The Most Basic Example

 		
 More States/Transitions

 		
 Adding Transition Behavior

 		
 Using/Affecting External Objects

 		
 Conclusion

 		
 Installation

 		
 Standard Installation

 		
 Development Installation

 		
 Advanced Usage

 		
 Use External JSON Files

 		
 Certain Transition Logic

 		
 Auto-Create State Constants

 		
 definite

 		
 definite.constants

 		
 definite.exceptions

 		
 definite.fsm

_static/file.png

_static/minus.png

_static/plus.png

